Characterization of the maleylacetate reductase MacA of Rhodococcus opacus 1CP and evidence for the presence of an isofunctional enzyme.
نویسندگان
چکیده
Maleylacetate reductases (EC 1.3.1.32) have been shown to contribute not only to the bacterial catabolism of some usual aromatic compounds like quinol or resorcinol but also to the degradation of aromatic compounds carrying unusual substituents, such as halogen atoms or nitro groups. Genes coding for maleylacetate reductases so far have been analyzed mainly in chloroaromatic compound-utilizing proteobacteria, in which they were found to belong to specialized gene clusters for the turnover of chlorocatechols or 5-chlorohydroxyquinol. We have now cloned the gene macA, which codes for one of apparently (at least) two maleylacetate reductases in the gram-positive, chlorophenol-degrading strain Rhodococcus opacus 1CP. Sequencing of macA showed the gene product to be relatively distantly related to its proteobacterial counterparts (ca. 42 to 44% identical positions). Nevertheless, like the known enzymes from proteobacteria, the cloned Rhodococcus maleylacetate reductase was able to convert 2-chloromaleylacetate, an intermediate in the degradation of dichloroaromatic compounds, relatively fast and with reductive dehalogenation to maleylacetate. Among the genes ca. 3 kb up- and downstream of macA, none was found to code for an intradiol dioxygenase, a cycloisomerase, or a dienelactone hydrolase. Instead, the only gene which is likely to be cotranscribed with macA encodes a protein of the short-chain dehydrogenase/reductase family. Thus, the R. opacus maleylacetate reductase gene macA clearly is not part of a specialized chlorocatechol gene cluster.
منابع مشابه
Functional characterization and stability improvement of a ‘thermophilic-like’ ene-reductase from Rhodococcus opacus 1CP
Ene-reductases (ERs) are widely applied for the asymmetric synthesis of relevant industrial chemicals. A novel ER OYERo2 was found within a set of 14 putative old yellow enzymes (OYEs) obtained by genome mining of the actinobacterium Rhodococcus opacus 1CP. Multiple sequence alignment suggested that the enzyme belongs to the group of 'thermophilic-like' OYEs. OYERo2 was produced in Escherichia ...
متن کاملStyA1 and StyA2B from Rhodococcus opacus 1CP: a multifunctional styrene monooxygenase system.
Two-component flavoprotein monooxygenases are emerging biocatalysts that generally consist of a monooxygenase and a reductase component. Here we show that Rhodococcus opacus 1CP encodes a multifunctional enantioselective flavoprotein monooxygenase system composed of a single styrene monooxygenase (SMO) (StyA1) and another styrene monooxygenase fused to an NADH-flavin oxidoreductase (StyA2B). St...
متن کاملCharacterization of the naphthalene-degrading bacterium, Rhodococcus opacus M213.
Bacterial strain M213 was isolated from a fuel oil-contaminated soil in Idaho, USA, by growth on naphthalene as a sole source of carbon, and was identified as Rhodococcus opacus M213 by 16S rDNA sequence analysis and growth on substrates characteristic of this species. M213 was screened for growth on a variety of aromatic hydrocarbons, and growth was observed only on simple 1 and 2 ring compoun...
متن کاملCrystal structure of 3-chlorocatechol 1,2-dioxygenase key enzyme of a new modified ortho-pathway from the Gram-positive Rhodococcus opacus 1CP grown on 2-chlorophenol.
The crystal structure of the 3-chlorocatechol 1,2-dioxygenase from the Gram-positive bacterium Rhodococcus opacus (erythropolis) 1CP, a Fe(III) ion-containing enzyme specialized in the aerobic biodegradation of 3-chloro- and methyl-substituted catechols, has been solved by molecular replacement techniques using the coordinates of 4-chlorocatechol 1,2-dioxygenase from the same organism (PDB code...
متن کاملIdentification of fluoropyrogallols as new intermediates in biotransformation of monofluorophenols in Rhodococcus opacus 1cp.
The transformation of monofluorophenols by whole cells of Rhodococcus opacus 1cp was investigated, with special emphasis on the nature of hydroxylated intermediates formed. Thin-layer chromatography, mass spectrum analysis, and (19)F nuclear magnetic resonance demonstrated the formation of fluorocatechol and trihydroxyfluorobenzene derivatives from each of three monofluorophenols. The (19)F che...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 180 14 شماره
صفحات -
تاریخ انتشار 1998